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Abstract

In this paper, a formulation for the dynamic stability analysis of functionally graded shells under harmonic axial

loading is presented. A pro®le for the volume fraction is assumed and a normal-mode expansion of the equations of

motion yields a system of Mathieu±Hill equations the stability of which is analyzed by the BolotinÕs method. The

present study examines the e�ects of the volume fraction of the material constituents and their distribution on the

parametric response, in particular the positions and sizes of the instability regions. Ó 2001 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The use of functionally graded materials has gained much popularity in recent years especially in extreme
high temperature environments. Functionally graded materials are composite materials, which are mi-
croscopically inhomogeneous, and the mechanical properties vary smoothly or continuously from one
surface to the other. It is this continuous change that results in gradient properties in functionally graded
materials. Typically, these materials are made from a mixture of ceramic and metal, or a combination of
di�erent metals. Unlike ®ber-matrix composites which have a mismatch of mechanical properties across an
interface of two discrete materials bonded together and may result in debonding at high temperatures,
functionally graded materials have the advantage of being able to withstand high temperature gradient
environments while maintaining their structural integrity. The ceramic material provides high temperature
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resistance due to its low thermal conductivity while the ductile metal component prevents fracture due to
thermal stresses.

Functionally graded materials are now being strongly considered as a potential structural material for
future high-speed spacecraft. They are also developed now for the general use as structural components in
high temperature environments. Many studies have examined functionally graded materials as thermal
barriers. With the increased usage of these materials, it is also important to understand the dynamics of
functionally graded material structures. A few studies have addressed this. The elastic problem of thick-
walled tubes of a functionally graded material under internal pressure in the case of plane strain has been
studied (Fukui and Yamanaka, 1992). Rooney and Ferrari (1994) presented the solution to the problem of

Nomenclature

Aij, Bij, Dij extensional, coupling, bending sti�nesses
Amnj, Bmnj, Cmnj modal constants
ex, eh normal strain components
exh shear strain component
e1, e2, l reference surface strains
k1, k2, s reference surface curvatures
E elastic modulus
h shell thickness
L shell length
m axial half wave number
n circumferential wave number
km mp/L
Mx, Mh, Mxh moment resultants
Nx, Nh, Nxh force resultants
MIJ , KIJ , QIJ characteristic matrices of Mathieu±HillÕs equation
Na pulsating axial load
N0 static component of Na

Ns harmonic component of Na

Ncr static buckling load
P excitation frequency
p nondimensionalized P
qmnj generalized coordinate
R shell radius
T time
u, v, w orthogonal components of displacement ®eld
V volume fraction
U power law exponent
x, h, z shell coordinates
q mass density
qt mass density per unit length
m PoissonÕs ratio
x shell natural frequency
H angle subtended by unstable region
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torsion of an inhomogeneous functionally graded shaft with rectangular cross-section where a methodology
was developed to reduce the problem to the solution of a simple linear ordinary di�erential equation. A
formulation of the stability problem for functionally graded hybrid composite plates was presented by
Birman (1995) where a micromechanical model was employed to solve the buckling problem for a rect-
angular plate subjected to uniaxial compression. The correlation between hardness and residual stress in
layered functionally graded materials was examined by Omori et al. (1995). It was found that the func-
tionally graded materials considered exhibited two kinds of residual stresses, a local stress which is stored in
each layer, and a layer stress is dispersed throughout each layer of the whole material. Durodola and
Adlington (1996) presented the use of numerical methods to assess the e�ect of various forms of gradation
of material properties to control deformation and stresses in rotating axisymmetric components such as
disks and rotors.

Studies of buckling of thin-walled isotropic cylinders under axial compression, torsional loadings,
bending, hydrostatic pressure and lateral pressure have been extensively covered in the literature. However,
structural components under periodic loads can undergo parametric resonance which may occur over a
range of forcing frequencies and if the load is compressive to the structure, resonance or instability can and
usually occurs even if the magnitude of the load is below the critical buckling load of the structure. It is
thus, of prime importance to investigate the dynamic stability of dynamic systems under periodic loads. The
parametric resonance of the cylindrical shells under axial loads has become a popular subject of study. It
was ®rst examined by Bolotin (1964), Yao (1965) and Vijayaraghavan and Evan-Iwanowski (1967). For
thin cylindrical shells under periodic axial loads, the method of solution is almost always to ®rst reduce the
equations of motion to a system of Mathieu±Hill equations. The dynamic stability for such a system of
equations can then be analyzed by a number of methods.

In this paper, the parametric resonance or dynamic stability of functionally graded cylindrical shells
under periodic axial loading is studied using BolotinÕs ®rst approximation. This work is a natural extension
of a previous piece of work by the present authors (Lam and Ng, 1997) on the dynamic stability of isotropic
cylindrical shells. This piece of work was motivated by the increased general use of functionally graded
materials and also a need to understand their dynamic responses.

2. Theory and formulation

The functionally graded cylindrical shell as shown in Fig. 1 is assumed to be thin and of length L,
thickness h and radius R. The x-axis is taken along a generator, the circumferential arc length subtends an
angle h, and the z-axis is directed radially inwards. The periodic extensional axial load per unit length is
given by

Na � N0 � Ns cosPt; �1�
where P is the frequency of excitation in radians per unit time. The equations of motion according to
Donnell's theory are thus given by
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oh
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ot2

; �2�
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where u, v and w are the components of displacement for an element of the shell wall, and

T.Y. Ng et al. / International Journal of Solids and Structures 38 (2001) 1295±1309 1297



qt �
Z h=2

ÿh=2

q�z�dz: �5�

The stress and moment resultants are de®ned as
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where

Aij;Bij;Dij

ÿ � � Z h=2

ÿh=2

Qij 1; z; z2
ÿ �

dz i; j� � 1; 2; 6�; �7�

and

Q11 � Q22 � Eeff

1ÿ m2
eff

; �8�

Q12 � meff

Eeff

1ÿ m2
eff

; �9�

Q66 � Eeff

2 1� meff� � ; �10�

Fig. 1. Coordinate system of the FGM cylindrical shell.
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Q16 � Q26 � 0; �11�
where Eeff and meff are the e�ective elastic modulus and e�ective Poisson's ratio of the functionally graded
shell, respectively, and will be de®ned subsequently.

The strain components ex, eh and exh which are the strains in the x direction, the circumferential direction
and the shear strain in the xh-plane of the middle surface, respectively, can be expressed as

ex � e1 � zk1; �12�

eh � e2 � zk2; �13�

exh � c� zs: �14�
The strain and curvatures are de®ned by DonnellÕs theory as

e1 � ou
ox
; �15�

e2 � 1

R
ov
oh

�
� w

�
; �16�

c � ov
ox
� 1

R
ou
oh
; �17�

k1 � ÿ o2w
ox2

; �18�

k2 � ÿ 1

R2

o2w

oh2
; �19�

s � ÿ 2

R
o2w
ox oh

: �20�

In order to accurately model the material properties of functionally graded materials, the properties
must be both temperature dependent and position dependent. This is achieved by using a simple rule of
mixtures for the sti�ness parameters coupled with the temperature dependent properties of the constituents.
The volume fraction is a spatial function and the properties of the constituents are functions of the tem-
perature. The combination of these functions give rise to the e�ective material properties of functionally
graded materials and can be expressed as

Feff T ; z� � � Fc T� �V z� � � Fm T� � 1� ÿ V z� ��; �21�
where Feff is the e�ective material property of the functionally graded material, Fc and Fm are the tem-
perature dependent properties of the ceramic and metal respectively, and V is the volume fraction of the
ceramic constituent of the functionally graded material. In addition, a simple power law exponent of
the volume fraction distribution is used to provide a measure of the amount of ceramic and metal in the
functionally graded material. In the present case, the volume fraction is de®ned as

V z� � � z� h=2

h

� �U

; �22�

where U is the power law exponent 06U61� �.
According to the above distribution described in Eq. (21), the inner surface of the cylindrical shell is

metal rich and the outer surface is ceramic rich. We shall name this type of material as Type A. For a

T.Y. Ng et al. / International Journal of Solids and Structures 38 (2001) 1295±1309 1299



cylindrical shell that is ceramic rich at the inner surface and metal rich at the outer surface which we shall
name Type B, the e�ective material properties are expressed as

Feff T ; z� � � Fm T� �V z� � � Fc T� � 1� ÿ V z� ��: �23�
Assuming the shell to be simply supported, there exists a solution for the equations of motion in the form

umn � Amneixt coskmxcosnh; �24�

vmn � Bmneixt sinkmx sinnh; �25�

wmn � Cmneixt sinkmxcosnh; �26�
where n represents the number of circumferential waves, m, the number of axial half waves in the corre-
sponding standing wave pattern and km � mp=L. x represents the natural frequency of the cylindrical shell
under constant axial loading N0.

The equations of motion can be solved using an eigenfunction expansion of the normal modes of free
vibration of a cylindrical shell under a constant axial load N0 with the oscillating component Ns� 0.
Substitution of the above three equations into the equations of motion which are also a set of three coupled
homogeneous equations yields a cubic frequency equation when the determinant is equated to zero.

C11 C12 C13

C21 C22 C23

C31 C32 C33

24 35 Amn

Bmn

Cmn

8<:
9=; � 0

0
0

8<:
9=;; �27�

where the CijÕs are de®ned in the appendix. Thus, for each m and n, there exists three roots corresponding to
the transverse, axial and circumferential modes.

To solve the equations of motion that include the oscillating component Ns, a solution is sought in the
form shown below where all the modes are superimposed.

umnj �
X3

j�1

X1
m�1

X1
n�1

Amnjqmnj t� �coskmxcosnh; �28�

vmnj �
X3

j�1

X1
m�1

X1
n�1

Bmnjqmnj t� � sinkmx sinnh; �29�

wmnj �
X3

j�1

X1
m�1

X1
n�1

Cmnjqmnj t� � sinkmxcosnh; �30�

where qmnj t� � is a generalized coordinate.
Substituting the above three equations into the equations of motion and simplifying yieldsX3

j�1

X1
m�1

X1
n�1

�qmnj

�
� x2

mnjqmnj

�
amnj coskmxcosnh � 0; �31�
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�
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�
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o
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Ns coskmx� �cosnh � 0; �33�
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where

amnj � Amnj

Cmnj
; bmnj �

Bmnj

Cmnj
: �34�

Making use of the orthogonality condition, we multiply Eq. (31) by arsi coskrx sinsh, Eq. (32) by
brsi sinkrx sinsh, and Eq. (33) by sinkrxcossh. This yields a set of equations

MIJ �qJ � KIJ� ÿ cosPtQIJ �qJ � 0; �35�
where MIJ , KIJ and QIJ are matrices and �qJ and qJ are column vectors consisting of the �qmnjÕs and qmnjÕs,
respectively. The subscripts r, s, i, m, n, j, I and J have the following ranges:

r; s;m; n � 1; 2; 3; 4; . . . ;N ;

i; j � 1; 2; 3;

I ; J � 1; 2; 3; 4; . . . ; �N � N � 3�:
�36�

The matrices MIJ , KIJ and QIJ are given as

MIJ �
Z L

0

Z 2p

0

�aIaJ coskrxcosshcoskmxcosnh� bIbJ sinkrx sinsh sinkmx sinnh

� sinkrxcossh sinkmxcosnh�dhdx

� pL=2 1� bIbJ � aIaJ� � if I � J ;

0 if I 6� J :

�
�37�

KIJ � x2
J MIJ ; �38�

QIJ � 1

qt

km

Z L

0

Z 2p

0

o
ox

Ns coskmxcosnh� � sinkrxcosshdhdx

� ÿpL=�2qt�krkmNs if I � J ;

0 if I 6� J :

�
�39�

3. Stability analysis

Eq. (35) is in the form of a second order di�erential equation with periodic coe�cients of the Mathieu±
Hill type. The regions of unstable solutions are separated by periodic solutions having period T and 2T with
T � 2p=P . The solutions with period 2T are of greater practical importance as the widths of these unstable
regions are usually larger than those associated with solutions having period T. Using BolotinÕs (1964) ®rst
approximation, the periodic solutions with period 2T can be sought in the form

f � a sin
Pt
2
� bcos

Pt
2
; �40�

where a and b are arbitrary vectors.
Substituting Eq. (40) into Eq. (35) and equating the coe�cients of the sin�Pt=2� and cos�Pt=2� terms, a

set of linear homogeneous algebraic equations in terms of a and b can be obtained. The conditions for
nontrivial solutions are given by

det
KIJ ÿ 1

2
QIJ ÿ 1

4
P 2MIJ 0

0 KIJ � 1
2
QIJ ÿ 1

4
P 2MIJ

� �
� 0: �41�
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Instead of solving the above nonlinear geometric equations for P, the above equation can be rearranged to
the standard form of a generalized eigenvalue problem

det
KIJ ÿ 1

2
QIJ 0

0 KIJ � 1
2
QIJ

� ��
ÿ P 2

1
4
MIJ 0
0 1

2
MIJ

� ��
� 0; �42�

where 0 is a N ´ N null matrix.

4. Numerical results and discussion

The ceramic material used in this study is silicon nitride and the metal material used is nickel. The
densities and Poisson's ratios of the materials are in this case independent of the temperature. The density
of silicon nitride is taken to be 2370 kg/m3 and that of nickel is 8900 kg/m3. The Poisson's ratio is 0.24 for
silicon nitride and 0.31 for nickel. The elastic moduli are however, temperature dependent and are obtained
from Touloukian (1967) as

Esn � 348:43� 109 1
ÿ ÿ 3:070� 10ÿ4 T � 2:160� 10ÿ7 T 2 ÿ 8:946� 10ÿ11 T 3

�
; �43�

Eni � 223:95� 109 1
ÿ ÿ 2:794� 10ÿ4 T ÿ 3:998� 10ÿ9 T 2

�
; �44�

where Esn and Eni are the elastic moduli of silicon nitride and nickel, respectively, and T is the temperature
in Kelvin. The nondimensional excitation frequency parameter p for the FGM shell is de®ned as

p � 2pRp
qt

A11

� �1=2

: �45�

Each unstable region is bounded by two lines which originate from a common point from the p-axis. The
two curves appear at the ®rst glance to be straight lines but are in fact, two very slight ``outward'' curving
plots. For the sake of tabular presentation, each unstable region is de®ned by its point of origin from the p-
axis with Ns � 0. The angle subtended, H, is also introduced to give a measure of the size of the unstable
region. It is calculated based on the arctangent of the right-angled triangle, abc, as shown in Fig. 2. This
angle gives an accurate measure of the slope of the boundary of the unstable region as calculations done
with the smaller similar triangle, ab0c0 (Fig. 2), are within 0.1%.

The values of N0 are chosen to be in terms of Ncr which is the critical buckling load of a simply supported
circular cylindrical shell subjected to static compressive axial load. From Timoshenko and Gere (1961), this
is conservatively chosen to be in terms of the nickel material and is thus given as

Ncr � Enih2

R 3 1ÿ v2
ni

ÿ �� �1=2
: �46�

Fig. 3 gives an illustrative graphical representation of Table 1 which are the results for mode (1,1) of a
Type A shell under tensile loading of N0 � 0:5Ncr. Results for mode (1,1) of a Type B shell under similar
loading are given in Table 2. The results for mode (1,1) of a Type A shell under compressive loading of
N0 � ÿ0:5Ncr are given in Table 3. For a Type B shell under similar compressive loading, results are
presented in Table 4. Corresponding results for mode (1,2) are given in Tables 5±8. An initial study has
been conducted to show the e�ects of the geometric parameters, L/R and R/h, on the unstable regions of a
simply supported isotropic cylindrical shell. The results are presented in Figs. 4 and 5. It is observed that
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with a decrease in length or an increase in thickness, i.e. overall increase in sti�ness, the unstable regions
shift to the right having higher points of origins. A detailed discussion on this can be found in Lam and Ng
(1997).

The dynamic stability results for the FGM shell presented in Tables 1±8 are for a simply supported
silicon nitride±nickel FGM cylindrical shell of geometric properties L/R� 1 and R/h� 100 for both Type A
and Type B materials. The results present the transverse modes only and the two higher axial and cir-
cumferential modes are not shown. Results presented are for di�erent values of the power law exponent U
for the transverse modes of �m; n� � �1; 1�; �1; 2�. The results presented are for U � 0; 0:5; 1; 5; 10;1. For

Fig. 2. An unstable region in the Ns/N0-p plane.

Fig. 3. Unstable regions for the transverse mode of mode (1,1) of a simply supported silicon nitride-nickel FGM Type A cylindrical

shell of geometric properties L/R� 1 and R/h� 100 and subjected to extensional loading of N0 � 0:5Ncr (a) U� 0, (b) U� 0.5, (c) U� 1,

(d) U� 5, (e) U� 10, (f) U�1.
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Type A material, when U� 0, the shell is fully ceramic (silicon nitrate) and when U�1, the shell is fully
metal (nickel). For Type B material, the converse is true. Due to its higher elastic modulus, the sizes of the
unstable regions associated with the ceramic material U� 0 are 50±55% smaller than those for the metal

Table 1

Unstable regions for the transverse mode of mode (1,1) of a simply supported silicon nitride±nickel FGM Type A cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to extensional loading of N0 � 0:5Ncr

U Point of origin p H (´10ÿ2)

0 10.955605 6.12220

0.5 10.894118 6.90880

1 10.864882 7.38560

5 10.804910 8.57300

10 10.790882 8.89840

1 10.773959 9.32320

Table 2

Unstable regions for the transverse mode of mode (1,1) of a simply supported silicon nitride±nickel FGM Type B cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to extensional loading of N0 � 0:5Ncr

U Point of origin p H (´10ÿ2)

0 10.773959 9.32320

0.5 10.848743 7.92440

1 10.882963 7.37660

5 10.936770 6.48780

10 10.946016 6.31620

1 10.946016 6.12220

Table 3

Unstable regions for the transverse mode of mode (1,1) of a simply supported silicon nitride±nickel FGM Type A cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to compressive loading of N0 � ÿ0:5Ncr

U Point of origin p H (´10ÿ2)

0 10.707442 6.26980

0.5 10.613564 7.09860

1 10.564626 7.60400

5 10.455408 8.87120

10 10.427831 9.22080

1 10.427831 9.67880

Table 4

Unstable regions for the transverse mode of mode (1,1) of a simply supported silicon nitride±nickel FGM Type B cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to compressive loading of N0 � ÿ0:5Ncr

U Point of origin p H (´10ÿ2)

0 10.393196 9.67880

0.5 10.526190 8.17680

1 10.583092 7.59400

5 10.673575 6.65400

10 10.689887 6.47320

1 10.707442 6.26980
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material U�1. It is also observed that for all the di�erent values of U considered, the regions associated
with compressive loadings are generally slightly larger than the corresponding regions associated with

Table 5

Unstable regions for the transverse mode of mode (1,2) of a simply supported silicon nitride±nickel FGM Type A cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to extensional loading of N0 � 0:5Ncr

U Point of origin p H (´10ÿ2)

0 8.5194084 7.64278

0.5 8.4772803 8.62034

1 8.4590579 9.21146

5 8.4268843 10.6771

10 8.4207292 11.0772

1 8.4141701 11.5984

Table 6

Unstable regions for the transverse mode of mode (1,2) of a simply supported silicon nitride±nickel FGM Type B cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to extensional loading of N0 � 0:5Ncr

U Point of origin p H (´10ÿ2)

0 8.4141701 11.5984

0.5 8.4601729 9.87008

1 8.4810885 9.19282

5 8.5111333 8.09416

10 8.5154656 7.88210

1 8.5194084 7.64278

Table 7

Unstable regions for the transverse mode of mode (1,2) of a simply supported silicon nitride±nickel FGM Type A cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to compressive loading of N0 � ÿ0:5Ncr

U Point of origin p H (´10ÿ2)

0 8.2071402 7.93984

0.5 8.1240355 9.00322

1 8.0809188 9.65170

5 7.9866327 11.2781

10 7.9634231 11.7267

1 7.9345878 12.3141

Table 8

Unstable regions for the transverse mode of mode (1,2) of a simply supported silicon nitride±nickel FGM Type B cylindrical shell of

geometric properties L/R� 1 and R/h� 100 and subjected to compressive loading of N0 � ÿ0:5Ncr

U Point of origin p H (´10ÿ2)

0 7.9345878 12.3141

0.5 8.0542139 10.3782

1 8.1037601 9.63006

5 8.1799865 8.42888

10 8.1931948 8.19880

1 8.2071402 7.93984
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tensile loadings. This is consistent with the results reported by Lam and Ng (1997) for the dynamic stability
analysis of isotropic cylindrical shells.

From Tables 1±8, it can be observed that as U increases from 0 to 1, the sizes of the unstable regions
gradually change from the size associated with U� 0 to the size associated with U�1. It is also observed
that at U� 10, the results are already very close to those associated with U�1. Thus, the range of U where
the results are more sensitive to variation in U is about 5 < U < 0. Traditionally, FGMs were designed as
thermal barrier materials for aerospace structures and fusion reactors. However, FGMs are now developed
for general use as structural elements in extreme high temperature environments. With the advent and
wider use of FGMs, it is important to understand the vibration and dynamic stability behaviors of FGM-
material structures.

From this study, it is clear that the natural frequencies ± which correspond to half of the value of the
point of origin of the unstable regions ± and the instability regions can be adjusted according to the material
distribution. This is illustrated in Fig. 6, where the variation of the point of origin and unstable region size
with the volume exponent is shown. It shows that the unstable region size is much more sensitive to changes
in the volume fraction exponent than the point of origin. Thus, by varying the volume fraction of the
material constituents in FGM cylindrical shells, the sizes of the unstable regions can be very e�ectively
adjusted or controlled.

Fig. 4. Variation of the ®rst two unstable regions with shell length for a simply supported isotropic cylindrical shell of thickness ratio

R/h� 100 and under tensile loading of N0� 0.1Ns.
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Fig. 5. Variation of the ®rst two unstable regions with shell thickness for a simply supported isotropic cylindrical shell of length ratio

L/R� 2 and under tensile loading of N0� 0.1Ns.

Fig. 6. Variation of the point of origin p and unstable region size H with the volume fraction exponent U of a simply supported silicon

nitride±nickel FGM Type A cylindrical shell of geometric properties L/R� 1 and R/h� 100 and subjected to extensional loading of

N0 � 0:5Ncr. p0 and H0 are the point of origin and unstable region size respectively when U� 0.
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5. Conclusions

The dynamic stability of simply-supported cylindrical shells of functionally graded material under
combined static and periodic axial forces was investigated. Results were found to vary signi®cantly when
material distribution was varied by changing the values of the power law exponent which controls the
volume fraction of the di�erent materials in the FGM shell. It was also found that reasonable control can
be achieved on the natural frequencies and dynamic instability regions by correctly varying the power law
exponent.

Appendix A

C11 � A11k
2
m �

1

R2
A66n2 ÿ qtx

2;

C12 � ÿ 1

R
A12kmnÿ 1

R
A66kmn;

C13 � ÿ 1

R
A12km ÿ B11k

3
m ÿ

1

R2
B12kmn2 ÿ 2

R2
B66kmn2;

C21 � ÿ 1

R
A12kmnÿ 1

R
A66kmn;

C22 � A66k
2
m �

1

R2
A22n2 ÿ qtx

2;

C23 � 2

R
B66k

2
mn� 1

R2
A22n� 1

R
B12k

2
mn� 1

R3
B22n3;

C31 � ÿ 1

R
A12km ÿ B11k

3
m ÿ

1

R2
B12kmn2 ÿ 2

R2
B66kmn2;

C32 � 2

R
B66k

2
mn� 1

R2
A22n� 1

R
B12k

2
mn� 1

R3
B22n3;

C33 � 2

R
B12k

2
m �

2

R3
B22n2 � D11k

4
m �

1

R2
D12 kmn� �2 � 4

R2
D66 kmn� �2 � 1

R2
D12 kmn� �2 � 1

R4
A22

� N0k
2
m ÿ qtx

2: �A:1�

References

Birman, V., 1995. Buckling of functionally graded hybrid composite plates. Proceedings of the 10th Conference on Engineering

Mechanics, Boulder, USA.

Bolotin, V.V., 1964. The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco.

Durodola, J.F., Adlington, J.E., 1996. Functionally graded material properties for disks and rotors. Proceedings of the 1996 First

International Conference on Ceramic and Metal Matrix Composites, San Sebastian, Spain.

Fukui, Y., Yamanaka, N., 1992. Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure.

JSME International Journal, Series 1: Solid Mechanics, Strength of Materials 35, 379.

Lam, K.Y., Ng, T.Y., 1997. Dynamic stability of cylindrical shells subjected to conservative periodic axial loads using di�erent shell

theories. Journal of Sound and Vibration 207, 497.

Omori, M., Sakai, H., Nishiyama, K., Suzuki, E., Hirai, T., 1995. Correlation between hardness and residual stress in ZrO//2(3Y)/

metal functionally graded materials. Journal of the Japan Society of Powder and Powder Metallurgy 42, 1384.

Rooney, F.J., Ferrari, M., 1994. Torsion of a functionally graded shaft with rectangular cross-section. Proceedings of the Energy-

Sources Technology Conference, New Orleans, USA.

Timoshenko, S.P., Gere, J.M., 1961. Theory of Elasticity. McGraw-Hill, New York.

1308 T.Y. Ng et al. / International Journal of Solids and Structures 38 (2001) 1295±1309



Touloukian, Y.S., 1967. Thermophysical Properties of High Temperature Solid Materials. Mcmillian, New York.

Vijayaraghavan, A., Evan-Iwanowski, R.M., 1967. Parametric instability of circular cylindrical shells. Journal of Applied Mechanics

31, 985.

Yao, J.C., 1965. Nonlinear elastic buckling and parametric excitation of a cylinder under axial loads. Journal of Applied Mechanics 29,

109.

T.Y. Ng et al. / International Journal of Solids and Structures 38 (2001) 1295±1309 1309


